Synthesis and reactions of chlorodeoxy-L-talofuranoid derivatives*†

Cheang-Kuan Lee

Department of Chemistry, National University of Singapore, Kent Ridge, 0511 (Singapore)

(Received December 29th, 1989; accepted for publication, February 15th, 1990)

ABSTRACT

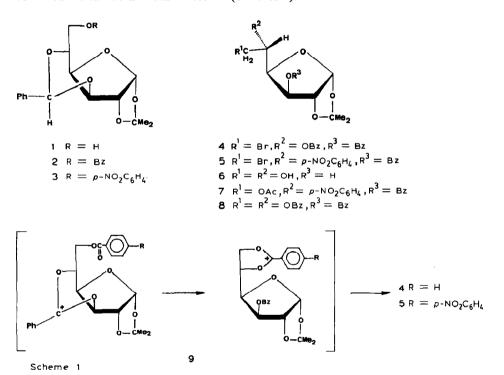
Reaction of 6-O-acyl-3,5-O-benzylidene derivatives of 1,2-O-isopropylidene- α -D-glucofuranose with N-bromosuccinimide affords mainly 5-O-acyl-6-bromo-6-deoxy-1,2-O-isopropylidene- β -L-idofuranose in good yield. Convenient preparative routes to 1,2-O-isopropylidene- β -L-talofuranose and its conversion into 5-chloro-5-deoxy and 5,6-dichloro-5,6-dideoxy derivatives are described.

INTRODUCTION

Interest in chlorodeoxy derivatives of sugar arose from the discovery by Hough and his co-workers² that the introduction of halogen substituents at certain positions of the sucrose molecule can increase the sweetness of the compound several hundred times. In fact, a group of mixed deoxyhalo derivatives of sucrose was found^{3,4} to possess sweetness up to 7500 times that of sucrose.

Systematic studies of the structural and mechanistic aspects associated with sweetness of sugars had been confined mainly to D sugars and their derivatives⁴, with only one systematic study⁵ being reported for L sugars. Sweeteners derived from L sugars could have considerable advantages, particularly since they are not metabolised and would, therefore, be non-caloric. The synthesis and reactions of chlorodeoxy-1,2-O-isopropylidene- β -L-talofuranose derivatives are, therefore, of interest and are now described.

RESULTS AND DISCUSSION

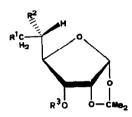

The reaction of benzylidene acetals of sugars with N-bromosuccinimide can result⁶ in the opening of the acetal ring accompanied by rearrangement leading to the incorporation of bromine at a carbon atom other than those involved in the acetal ring, particularly when nearby participating function(s) are present. Hanessian and Plessas⁶ reported that 3,5-O-benzylidene- α -D-glucofuranose (1) gave mainly 5-O-benzoyl-6-bromo-6-deoxy-1,2-O-isopropylidene- α -D-glucofuranose together with some 3,6-an-hydro-5-O-benzoyl-1,2-O-isopropylidene- α -D-glucofuranose. However, the reaction of

^{*} Dedicated to Professor Leslie Hough in the year of his 65th birthday.

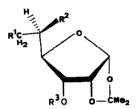
[†] Chorodeoxy-L-hexofuranoid Derivatives, Part 2. For Part 1, see ref. 1.

204 CHEANG-KUAN LEE

N-bromosuccinimide with the 6-O-benzoyl (2) or 6-O-p-nitrobenzoyl (3) derivatives of 1 afforded mainly 3,5-di-O-benzoyl (4) or 3-O-benzoyl-5-O-p-nitrobenzoyl (5) derivatives of 6-bromo-6-deoxy-1,2-O-isopropylidene- β -L-idofuranose, respectively. The presence of a bromine substituent in 4 and 5 was evident from their mass spectra. Accurate mass measurement revealed the $[M^+-15]$ fragment for 4 at (m/z 475:477 (ratio 1:1), and for 5 at m/z 520:522 (ratio 1:1). The 13 C-n.m.r. spectra clearly showed that the C-6 resonance had been shifted upfield (δ 30.55), due to the shielding effect of the bromine substituent. The L-ido configuration of 4 and 5 was confirmed by their conversion into the known crystalline 1,2-O-isopropylidene- β -L-idofuranose (6) (by reacting 4 and 5, initially with potassium acetate or benzoate in boiling acetonitrile, to give 7 and 8, respectively, followed by Zemplén deacylation) and its triacetate¹. Although there are other mechanistic possibilities, it seems likely that the reaction occurred via the benzoxonium ions 9 (Scheme 1).



The necessary L-talose precursor (10) was obtained from 1,2-O-isopropylidene- β -L-idofuranose (6) by isopropylidenation in acetone-2,2-dimethoxypropane⁸ and epimerisation at C-3 by an oxidation-reduction sequence, to give the known 1,2:5,6-di-O-isopropylidene- β -L-talofuranose⁹, mild acid hydrolysis of which gave 10 in $\sim 52\%$ overall yield.


Compound 10 was also prepared by the reaction under nitrogen of 3-O-ben-zoyl-1,2-O-isopropylidene-5,6-di-O-mesyl- α -D-allofuranose⁹ (11) with potassium acetate or benzoate in N,N-dimethylformamide at $\sim 90^{\circ}$ for 8-10 h in the presence of

18-Crown-6, to give 14 and 15, respectively, in yields of 71-78%. Deacylation with methanolic sodium methoxide then gave 10.

The initial displacement of MsO-6 of 11 by acetate or benzoate to give 12 or 13 (\sim 83%), respectively, was readily effected¹ in boiling acetonitrile in the presence of 18-Crown-6 under nitrogen. No displacement of MsO-5 was observed even after reaction for 24 h. This route provides a convenient synthesis of C-5 derivatives. Thus, 6-O-acetyl-3-O-benzoyl-5-chloro-5-deoxy-1,2-O-isopropylidene- β -L-talofuranose (16) was obtained in \sim 80% yield when 12 was treated with potassium chloride in N,N-dimethylformamide. The mass spectrum of 16 clearly reflected a chloro substituent, as indicated by the [M⁺ - 15] fragment at m/z 369 (ratio 3:1) in the mass spectrum. Also, in the ¹³C-n.m.r. of 16, the C-5 resonance (δ 57.5) was shifted upfield by \sim 15 p.p.m. compared to those for 12, 13, and 17.

10
$$R^1 = R^2 = OH, R^3 = H$$

14 $R^1 = R^2 = OAC, R^3 = Bz$
15 $R^1 = R^2 = OBZ, R^3 = Bz$
16 $R^1 = OAC, R^2 = CI, R^3 = Bz$
20 $R^1 = CI, R^2 = OH, R^3 = H$
21 $R^1 = R^2 = CI, R^3 = Bz$

11
$$R^1 = R^2 = OMs, R^3 = Bz$$

12 $R^1 = OAc, R^2 = OMs, R^3 = Bz$
13 $R^1 = OBz, R^2 = OMs, R^3 = Bz$
17 $R^1 = R^2 = OH, R^3 = H$
18 $R^1 = R^2 = CI, R^3 = H$
19 $R^1 = R^2 = CI, R^3 = Ac$

The reaction of 10 with sulphuryl chloride (3 equiv.), initially at $\sim -55^{\circ}$ and then at $\sim -10^{\circ}$ for 12 h, gave, after dechlorosulphation, two major faster-moving components which were isolated by flash chromatography and shown to be 5,6-dichloro-5,6-dideoxy-1,2-O-isopropylidene- α -D-allofuranose (18, 36%) (by conversion into its 3-acetate 19) and 6-chloro-6-deoxy-1,2-O-isopropylidene- β -L-talofuranose (20, 26%). Compound 20 could be obtained in $\sim 65\%$ yield by carrying out the reaction using 1.2 equiv. of sulphuryl chloride at $\sim -30^{\circ}$ for ~ 15 h. Likewise, the yield of 18 was increased to $\sim 63\%$ when the reaction mixture was stirred at room temperature for ~ 10 h.

The presence of chlorine substituent(s) in derivatives 18 and 20 was confirmed from the n.m.r. and mass-spectral data. Accurate mass measurement showed a fragment ion $[M^+-15]$ at m/z 223 for 20, corresponding to $C_8H_{12}ClO_5$ (ratio 3:1) and m/z 242 for 18, corresponding to $C_8H_{11}Cl_2O_4$ (ratio 9:6:1). The resonances due to H-3,4,5 in the ¹H-n.m.r. spectrum of 20 overlapped, but the spectrum of the trichloroacetylcarbamate derived from 20 contained two high-field NH singlets and, although the signals due to H-3 and H-5 were still unresolved, they had been deshielded by ~ 0.1 p.p.m., thereby indicating the position of the hydroxyl groups in 20. Furthermore, the ¹³C-n.m.r. spectrum of 19 showed an upfield shift of the resonance for C-6 by ~ 19 p.p.m.

TABLEI

Compound	H-1	Н-2	Н-3	H-4	Н-5	9-Н	,9-Н	CMe_2	Other signals
4	6.04(d)	4.67(d)	5.60(d)	4.87(dd)	5.5-5.7(m)	4.6-4.8(m)	3.65(dd)	1.59, 1.32	
S	6.05(d)	4.69(d)	5.63(d)	4.85(dd)	5.6-5.7(m)	3.74(dd)	3.58(dd)	1.62, 1.36	
7	6.05(d)	4.71(d)	5.60(d)	4.73(dd)	5.8-5.9(m)	4.57(dd)	4.28(dd)		1.99(MeCO)
œ	6.07(d)	4.69(d)	5.61(d)	4.82(dd)	5.8-6.0(m)	4.76(dd)	4.50(dd)	1.59, 1.34	
12	5.89(d)	-0.0-0.0-5.0-5.3(m)	0-5.3(m)	4.52(dd)	5.0-5.3(m)	4.53(dd)	4.18(dd)	1.54, 1.33	2.05(MeCO)
									$3.05(MeSO_2)$
13	5.91(d)	5.	5.1-5.4(m)	4.57(dd)	5.1-5.4(m)	4.73(dd)	4.54(dd)	1.55, 1.33	$3.04(MeSO_2)$
14	5.90(d)	4.95(dd)	4.88(t)	4.43(dd)	5.33(m)	4.67(dd)	4.21(dd)	1.57, 1.34	2.01, 2.04(Me-
Ā	(4)40 \$		\$ (0_\$ 1(m)	(i	\$ 80(m)	4 6. 4 8(m)	8(m)	1 57 1 34	9
£ 21	5.94(d)	4 98(44)	5.19(dd)	4 \$6(44)		4 1-4 5(m)) (m)	1.55 1.35	2 09(MeCO)
2 2	5.24(d) 5.83(d)	4.25(dd)	7.17(dd) 4.05(dd)	4.50(dd)	4 20Kdd)	3,646		1.56 1.35	2.15(MeCO)
2 8	5.83(d)	4.60(dd)	(pp)cc:	T. J. (CE)	3.4-4.0(m)		-0.0-0.0	1.58, 1.38	2.41, 2.51(OH)
200	5.90(d)	4.8	-4.8-5.0(m)	4.4-4.6(m)	5.24(td)	3.80(d)		1.58, 1.37	8.65(NH)
21	5.93(d)	4.99(dd)	5.19(dd)	4.80(dd)	4.24(td)	3.92(dd)	3.84(dd)	1.56, 1.35	
Compound	J _{1,2}	J _{2,3}	J _{3,4}	J _{4.5}	J _{5.6}	J _{5.6} .	J _{6.6} '		
4	3.8	0	3.4	7.1	3.7	4.7	9.9		
S	3.7	0	3.0	7.0	4.5	5.0	12.0		
7	3.7	0	3.0	7.0	4.0	5.5	12.2		
œ	3.7	0	3.2	7.3	3.9	5.6	12.2		
12	3.7	0	3.4	9.3	3.3	7.7	12.2		
13	3.4	0	3.5	7.6	3.6	4.9	12.2		
14	3.7	4.6	4.6	3.4	3.6	7.3	12.4		
15	3.4								
16	3.6	4.8	8.3	2.1					
19	3.4	5.3	7.7	5.3	6.5				
20	3.7	4.7							
20,	3.4			3.7	5.6				
21	3.7	4.7	8.1	1.7	7.5	6.9	2.7		

" Chemical shifts in p.p.m., J in Hz. b With trichloroacetyl isocyanate.

TABLE II

¹³C-Chemical shifts" for solutions in CDCl₃

$MeSO_2$					38.5	38.7						
СОМе			20.4		20.7		20.7, 20.6		20.7	20.6		
CMe ₂ CMe ₂	26.8, 26.3	26.8, 26.3	26.6, 26.0	26.8, 26.3	26.5, 26.5	26.7, 26.7	26.6, 26.6	26.7, 26.7	26.8, 26.8	26.7, 26.7	26.6, 26.6	26.8, 26.8
CMe_2	112.5	112.7	112.4	112.5	113.5	113.6	113.4	113.4	113.6	113.5	113.1	113.8
0-0	30.6	30.3	62.4	63.4	61.9	9.79	62.8	63.5	65.1	45.1	46.0	44.4
C-5	70.4	71.5	70.7	6.69	72.5	72.6	8.89	9.69	57.5	60.4	70.2	29.7
C-4	7.97	76.5	76.4	77.0	76.3	76.5	72.2	72.6	73.7	73.4	71.6	73.8
C-2 C-3	80.1	83.7 78.4	77.4	77.5	177.4	5.77	/76.2	76.5	77.5	/77.4	/78.7	9.9/
C-2	83.6	83.7	83.5	83.2	77.8,	77.8	77.3,	77.4	77.6	77.8,	79.9	77.9
C-1	104.7	104.7	104.5	104.7	104.2	104.3	104.3	104.5	104.8	104.1	104.2	104.8
Compound C-1	4	ĸ	7	œ	12	13	4	15	16	61	70	21

" P.p.m. downfield from DSS.

208 CHEANG-KUAN LEE

with respect to those for 10 and 17. Likewise, the 13 C-n.m.r. spectrum of 18 showed upfield shifts of the resonances of C-5 and C-6 by ~ 10 and ~ 20 p.p.m., respectively, with respect to those for 10 and 17, clearly indicating the positions of the chloro substituents in 18.

Similar treatment of 3-O-benzoyl-1,2-O-isopropylidene- α -D-allofuranose with sulphuryl chloride yielded, as expected, 3-O-benzoyl-5,6-dichloro-5,6-dideoxy- β -L-ta-lofuranose (21). The presence of chloro substituents at C-5 and C-6 was evident from the n.m.r. and mass-spectral data (Tables I and II).

EXPERIMENTAL

For general experimental details, see ref. 1

- 3,5-Di-O-benzoyl-6-bromo-6-deoxy-1,2-O-isopropylidene- β -D-idofuranose (4). To a solution of 2 (2.1 g) in carbon tetrachloride (50 mL) were added recrystallised N-bromosuccinimide (1.0 g) and barium carbonate (3.0 g). The mixture was boiled under reflux for 2.5 h, when t.l.c. (ethyl acetate-hexane, 3:1) showed major and minor fast-moving spots with similar R_F values. The suspension was filtered and concentrated. Flash chromatography (ethyl acetate-hexane, 3:1) of the residue gave 4 (1.8 g, 84%), isolated as a syrup, $[\alpha]_D 6^\circ$ (c 0.45, chloroform) (Found: C, 56.3; H, 4.6; Br, 16.2. $C_{23}H_{23}BrO_7$ calc.: C, 56.3; H, 4.7; Br, 16.1%).
- 3-O-Benzoyl-6-bromo-6-deoxy-1,2-O-isopropylidene-5-O-p-nitrobenzoyl-β-L-ido-furanose⁷ (5). Compound 3 was treated with N-bromosuccinimide as for 4, to yield 5 (1.4 g, 75%), $[\alpha]_D$ –47° (c 0.5, acetone) (Found: C, 51.2; H, 4.45; Br, 15.2; N, 2.9. C₂₃H₂₂BrNO₉ calc.: C, 51.6; H, 4.1; Br, 14.8; N, 2.6%).
- 3,5,6-Tri-O-benzoyl-1,2-O-isopropylidene- β -L-idofuranose (8). Acetonitrile (15 mL) containing activated alumina (0.5 g) was stirred with potassium benzoate (0.75 g) for 15 min. 18-Crown-6 (0.1 g) was added, followed by 4 (0.63 g), and the mixture was boiled under reflux for 6 h under nitrogen. T.l.c. (ethyl acetate-hexane, 3:1) then showed only one fast-moving spot. The mixture was filtered and concentrated, and the syrupy residue was eluted from a short column of silica gel, with the above solvent, to yield 8 (76.5%), m.p. $102-104^{\circ}$, $[\alpha]_D 9^{\circ}$ (c 0.4, acetone) (Found; 67.3; H, 5.0. $C_{30}H_{28}O_9$ calc.: C, 67.7; H, 5.3%).
- 6-O-Acetyl-3-O-benzoyl-1,2-O-isopropylidene-5-O-p-nitrobenzoyl- β -L-idofuranose (7). Compound 5 was treated with potassium acetate as above to yield syrupy 7 (72.3%), [α]_D +4° (c 0.4, chloroform) (Found: C, 58.3; H, 5.1; N, 2.55. $C_{25}H_{25}NO_{11}$ calc.: 58.25; H, 4.85; N, 2.7%).
- 1,2-O-Isopropylidene-β-L-idofuranose (6). Compounds 7 and 8 were each deacylated with methanolic 0.1 m sodium methoxide for 1 h at room temperature. Each solution was deionised with Duolite MB 5113 mixed-bed resin and concentrated to give 6, m.p. 111–114° (from ether), $[\alpha]_D 20^\circ$ (c 0.55, methanol); lit. m.p. 112–113°, $[\alpha]_D 19^\circ$ (methanol).
- 1,2-O-Isopropylidene- β -L-talofuranose (10). (a) Compound 6 was converted into 1,2:5,6-di-O-isopropylidene- β -L-idofuranose, using acetone-2,2-dimethoxypro-

pane⁸; the diacetal had m.p. $152-154^{\circ}$, $[\alpha]_D - 20^{\circ}$ (c 0.5, methanol); lit.⁸ m.p. $150-152^{\circ}$, $[\alpha]_D - 19^{\circ}$ (water). A solution of the diacetal (5 g) in methyl sulphoxide (5 mL) and N,N-dimethylformamide (32 mL) was heated with phosphorus pentaoxide (5.0 g) at 65° for 2.5 h, when t.l.c. showed that the reaction was complete. The mixture was poured into vigorously stirred ice—water, the precipitate was collected, and a solution in methanol (20 mL) was treated with sodium borohydride (1.0 g) during 0.5 h. The solution was stirred at room temperature for 1.5 h, then neutralised with Duolite mixed-bed resin, and concentrated to dryness. A solution of the syrupy residue in methanol (10 mL) and aqueous 0.8% sulphuric acid (10 mL) was stirred at room temperature for 2.5 h, when t.l.c. (ethyl acetate—hexane, 3:1) showed one major and a minor product. The solution was neutralised (BaCO₃), filtered, and concentrated to give 10 (2.6 g, 52%), m.p. 91–93°, $[\alpha]_D + 52^{\circ}$ (c 0.5, ethanol); lit.⁹ m.p. 100–101°, $[\alpha]_D + 52^{\circ}$ (methanol).

(b) A solution of 3-O-benzoyl-1,2-O-isopropylidene-5,6-di-O-mesyl- α -D-allofuranose⁸ (11, 3.0 g) in N,N-dimethylformamide (15 mL) was treated with potassium acetate (3.0 g) as described for **8**. After \sim 8 h at \sim 90°, t.l.c. revealed one fast-moving and several slower minor components. Work-up in the usual manner afforded 5,6-di-O-acetyl-3-O-benzoyl-1,2-O-isopropylidene- β -L-talofuranose (14, 77.7%), m.p. 69–71°, $[\alpha]_D + 72^\circ$ (c 0.8, acetone) (Found: C, 58.8, H, 5.7. $C_{20}H_{24}O_9$ calc.: C, 58.9; H, 5.9%).

A solution of 11 (3.5 g) was treated similarly with potassium benzoate (3.5 g), as described above, to give 3,5,6-tri-O-benzoyl-1,2-O-isopropylidene- β -L-talofuranose (15, 71.2%), m.p. 147-148° (from ethanol), $[\alpha]_D + 88^\circ$ (c 0.7, acetone); lit. 9 m.p. 156-158°, $[\alpha]_D + 90^\circ$ (chloroform).

A solution of 14 and 15 in methanol was treated with a catalytic amount of sodium methoxide for 0.5 h at room temperature. The solution was deionised with Duolite MB 5113 mixed-bed resin and concentrated to give a product identical to that obtained in (a).

6-O-Acetyl-3-O-benzoyl-1,2-O-isopropylidene-5-O-mesyl- α -D-allofuranose (12). — Reaction of 11 with potassium acetate, as described for 8, gave, after 3 h at 70°, 12 (82.9%), m.p. 78-80°, $[\alpha]_D$ + 101.8° (c 0.6, acetone) (Found: C, 50.8; H, 5.2; S, 7.4. $C_{19}H_{24}O_{10}S$ calc.: C, 51.35; H, 5.4; S, 7.2%).

3,6-Di-O-benzoyl-1,2-O-isopropylidene-5-O-mesyl- α -D-allofuranose (13). — Reaction of 11 was repeated with potassium benzoate, with boiling under reflux for 6 h, to yield 13 (89.4%), m.p. 128–129° (from ethanol), $[\alpha]_D + 91^\circ$ (c 0.3, ethanol) (Found: C, 57.2; H, 5.4; S, 6.0. $C_{24}H_{26}O_{10}S$ calc.: C, 56.9; H, 5.1; S, 6.3%).

6-O-Acetyl-3-O-benzoyl-5-chloro-5-deoxy-1,2-O-isopropylidene-β-L-talofuranose (16). — Reaction of 12 with potassium chloride in N,N-dimethylformamide, as described for 8, gave, after 8 h, syrupy 16 (80%), $[\alpha]_D$ + 66° (c 0.8, acetone) (Found: C, 56.5; H, 5.6; Cl, 9.5. $C_{18}H_{21}ClO_7$ calc.: C, 56.2; H, 5.5; Cl, 9.2%).

Reaction of sulphuryl chloride with 1,2-O-isopropylidene- β -L-talofuranose (10). — To a solution of 10 (1.6 g) in pyridine (6 mL) and chloroform (6 mL) at $\sim -50^{\circ}$ was added a solution of sulphuryl chloride (2 mL) in chloroform (2 mL) dropwise during 15 min. The mixture was kept overnight at $\sim -10^{\circ}$, when t.l.c. (ethyl acetate-hexane, 1:1)

210 CHEANG-KUAN LEE

revealed two major and several minor fast-moving products. The mixture was poured into vigorously stirred, ice-cold, aqueous 10% sulphuric acid (20 mL) and extracted with dichloromethane (2 × 10 mL). The combined extracts were washed successively with water, saturated aqueous sodium hydrogenearbonate, and water, then concentrated. A solution of the syrupy residue in methanol (10 mL) was stirred in an ice-bath and a few drops of 0.8% sodium iodide in water-methanol (1:1) were added. After stirring for 0.5 h, the solution was concentrated to dryness. Flash chromatography (ethyl acetate-hexane, 1:1) of the residue gave, first, 5,6-dichloro-5,6-dideoxy-1,2-O-isopropylidene- α -D-allopyranose (18, 38%), [α]_D +49° (c 0.25 methanol) (Found: C, 41.8; H, 5.7; Cl, 28.0 $C_9H_{14}Cl_2O_4$ calc.: C, 42.0; H, 5.4; Cl, 27.6%).

Eluted second was 6-chloro-6-deoxy-1,2-*O*-isopropylidene- β -L-talofuranose (**20**, 26%), m.p. 146–148°, [α]_D +74° (c 0.15, ethanol) (Found: C, 45.0; H, 6.0; Cl, 15.2. C₀H₁₅ClO₅ calc.: C, 45.3; H, 6.3; Cl, 14.9%).

When the reaction was carried out as above but left for ~ 10 h at room temperature, one major and traces of several fast-moving products were formed and $\sim 63\%$ of 18 was isolated.

When the reaction was repeated with 1.2 equiv. of sulphuryl chloride and the mixture was worked-up after ~ 10 h at $\sim -30^{\circ}$, $\sim 65\%$ of 20 was obtained.

3-O-Acetyl-5,6-dichloro-5,6-dideoxy-1,2-O-isopropylidene-α-D-allofuranose (19). — Conventional acetylation of 18 in pyridine and acetic anhydride gave 19 (89%), $[\alpha]_D$ + 96° (c 0.25, acetone) (Found: C, 44.7; H, 5.7; Cl, 24.0. C₉H₁₄Cl₂O₄ calc.: C, 44.15; H, 5.35; Cl, 23.75%).

3-O-Benzoyl-5,6-dichloro-5,6-dideoxy-1,2-O-isopropylidene-β-L-talofuranose (21). — Treatment of 3-O-benzoyl-1,2-O-isopropylidene-α-D-allofuranose⁹ with sulphuryl chloride (2.5 equiv.), as described for 18, gave 21 as a syrup (58.4%), $[\alpha]_D + 109^\circ$ (c 0.5, acetone) (Found; C, 53.8; H, 5.1; Cl, 19.7. $C_{16}H_{18}Cl_2O_5$ calc.: C, 53.2; H, 5.0; Cl, 19.7%).

ACKNOWLEDGMENTS

The Shaw Foundation is thanked for financial support, and Ms. S. Y. Wong, Ms. L. K. Wong, and Mr. B. H. Yeo are thanked for help with recording the ¹H- and ¹³C-n.m.r. and mass spectra.

REFERENCES

- 1 C. K. Lee, Carbohydr. Res., 177 (1988) 247-252.
- L. Hough and S. Phadnis, Nature (London), 263 (1976) 800-802; L. Hough and R. Khan, Trends. Biochem. Sci., (1978) 61-63.
- 3 C. K. Lee, Br. Pat. 2,088,885A (1982); Chem. Abstr., 97 (1982) 145225q; U.S. Pat. 4,405,654 (1983); Chem. Abstr., 100 (1984) 33495b.
- 4 C. K. Lee. Adv. Carbohydr. Chem. Biochem., 45 (1984) 199-351.
- 5 R. S. Shallenberger, T. E. Acree, and C. Y. Lee, Nature (London), 221 (1969) 555-556.
- 6 J. W. Van Cleve, G. E. Inglett, and L. W. Tjarks, Carbohydr. Res., 137 (1985) 259-264.
- 7 S. Hanessian and N. R. Plessas, J. Org. Chem., 34 (1969) 1053-1058.
- 8 N. A. Hughes and N. M. Munkombwe, Carbohydr. Res., 101 (1982) 221-229.
- 9 T. Naka, T. Hashizume, and M. Nishimura, Tetrahedron Lett., (1971) 95-98.